

MEDNARODNA PODIPLOMSKA ŠOLA JOŽEFA STEFANA

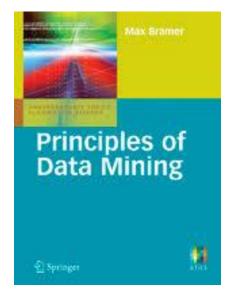
INFORMATION AND COMMUNICATION TECHNOLOGIES PhD study programme

Data Mining and Knowledge Discovery

Petra Kralj Novak November 18, 2019

http://kt.ijs.si/petra_kralj/dmkd3.html

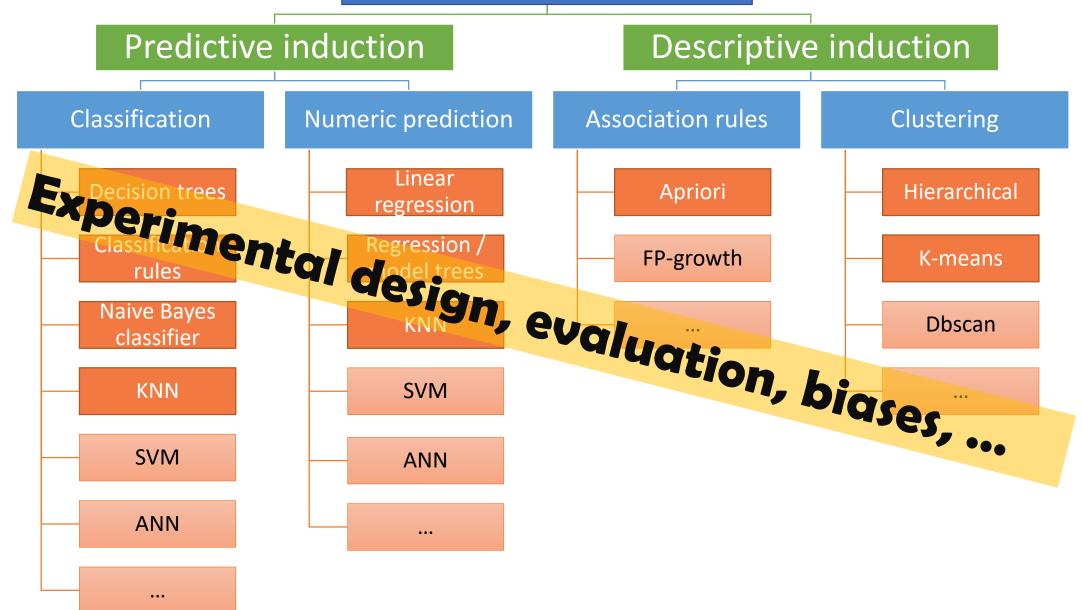
Data Mining and Knowledge Discovery


Course scope:

Prof. dr. Nada Lavrač	Introduction, rule learning, relational DM, semantic DM, embeddings
Doc. dr. Martin Žnidaršič	Ensemble methods, active learning, SVM & neural networks, correlation, causality and false patterns
Doc. dr. Petra Kralj Novak	Advanced evaluation, regression, advanced clustering Hands-on: Orange, Scikit, Keras
Course requirements:	
Written exam	Computational & theoretical tasks
Seminar	Analyzing your own data

Keywords Data Trans-Interpretation/ Pre-Mining Selection processing formation Evaluation **Knowledge** Transformed Patterns Preprocessed Target Data Data Data Data

- Data
 - Attribute (feature), example (instance), attribute-value data, target variable, class, discretization, market basket data
- Algorithms
 - Decision tree induction, entropy, information gain, overfitting, Occam's razor, decision tree pruning, naïve Bayes classifier, KNN, association rules, classification rules, Laplace estimate, regression tree, model tree, hierarchical clustering, dendrogram, k-means clustering, centroid, Apriori, heuristics vs. exhaustive search, predictive vs. descriptive DM, language bias, artificial neural networks, deep learning, backpropagation,...
- Evaluation
 - Train set, test set, accuracy, confusion matrix, cross validation, true positives, false positives, ROC space, AUC, error, precision, recall, F1, MSE, RMSE, support, confidence


Bramer, Max. (2007). Principles of Data Mining. 10.1007/978-1-84628-766-4.

Data for Data Mining
 Introduction to Classification: Naïve Bayes and Nearest Neighbour
 Using Decision Trees for Classification
 Decision Tree Induction: Using Entropy for
 Decision Tree Induction: Using Frequency
 Continuous Attributes
 Avoiding Overfitting of Decision Trees
 More About Entropy
 Inducing Modular Rules for Classification
 Measuring the Performance of a Classifier
 Association Rule Mining I
 Association Rule Mining II
 Clustering
 Text Mining

- Basic chapters about classification: 1, 2, 3, 4, 6, 8, 11
- Necessary prerequisite also for the course by prof. dr. Sašo Džeroski, doc. dr. Panče Panov: Computational Scientific Discovery from Structured, Spatial and Temporal Data

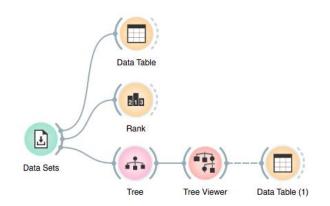
Data mining techniques

Hands-on

orange

• Open source machine learning and data visualization

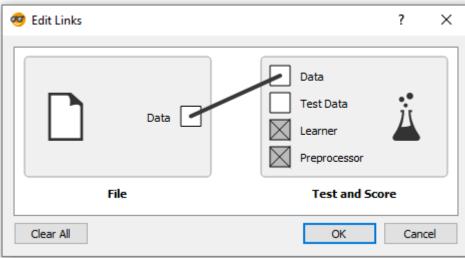
- Interactive data analysis workflows with a large toolbox
- Visual programming
- Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: Data Mining Toolbox in Python, JMLR 14(Aug): 2349–2353.


learn

- scikit-learn is Gold standard of Python machine learning
- Simple and efficient tools for data mining and data analysis
- Well documented
- Pedregosa et al. (2011) Scikit-learn: Machine Learning in Python, JMLR 12, pp. 2825-2830.

K Keras

- Neural-network library written in Python.
- Chollet, F. et al. (2015) "Keras"


- Open source machine learning and data visualization
 - <u>https://orange.biolab.si/</u>
 - <u>http://file.biolab.si/datasets/</u>
- Interactive data analysis workflows
- Visual programming
- Based on numpy, scipy and scikit-learn, GUI: Qt framework

- Widgets: building blocks of data analysis workflows that are assembled in Orange's visual programming environment.
- A typical workflow may mix widgets for data manipulation, visualization, modeling, evaluation, ...
- Widgets have inputs and outputs (typically data objects, learner objects, classifier objects, ...) and parameters

Data Test and Score OSC. Model → Tree -Tree Tree Viewer - Tree ? \times Name Tree Parameters \times ? Induce binary tree Min. number of instances in leaves: 2 ≑ Do not split subsets smaller than: 5 ≑ Limit the maximal tree depth to: 100 ≑ Classification Stop when majority reaches [%]: 95 ≑ \checkmark Apply Automatically Cancel 28

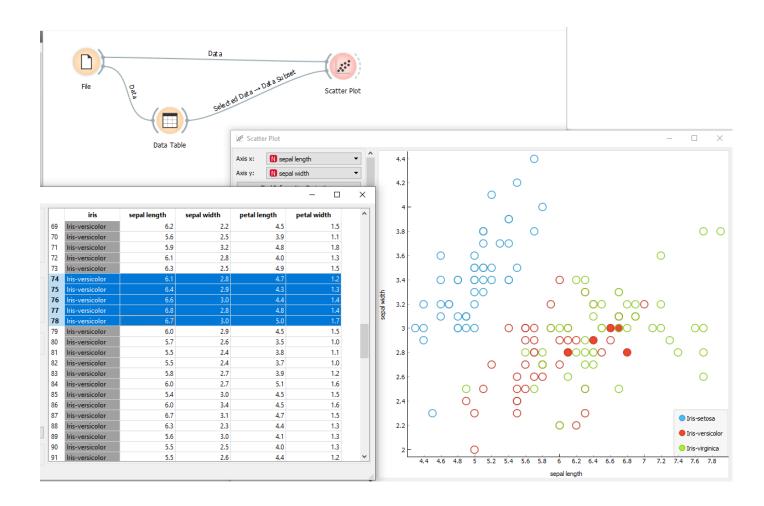
• Interactive

File

Lab exercise 1

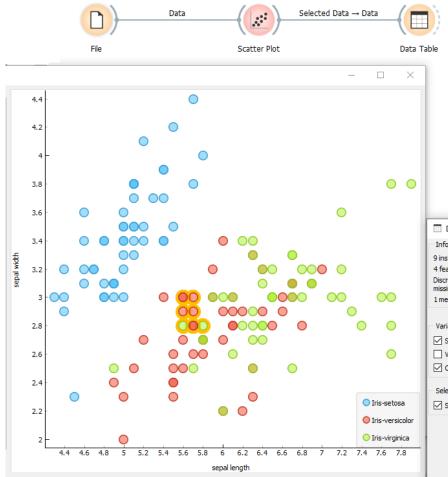
Getting to know orange

Exercise 1: Use Orange to fill in the following table


File Data Table

	Number of examples	Number of attributes	Number of numeric attributes	Number of categorical attributes	Target variable	Number of ordinal attributes
Zoo						
Iris						
Auto-mpg						
Wine						
Titanic						

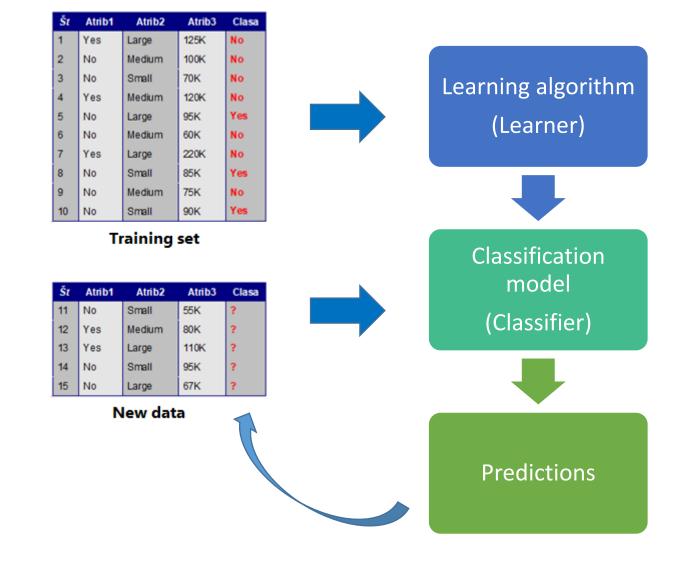
Exercise 2: Use a text editor to view (and understand) the .tab data format.


Exercise 3: Create two interesting data visualizations with Orange.

Interactive visualization in Orange

- The widgets File, Data Table and Scatter Plot are connected to form a visual program.
- The selected examples in the Data Table widget are displayed as full circles in the Scatterplot.
- Note: Scatter Plot has two inputs: Data and Data subset and they need to be connected correctly.

Interactive visualization in Orange


- The same widgets composed into a different visual program.
- The selected examples in Scatter Plot are shown in Data Table.

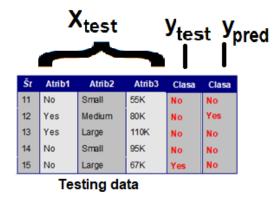
nstances (no missing values)				Group	sepal length	sepal width	petal length	petal wie
	1	Iris-versicolor	G1		5.7	. 2.8	4.5	
eatures (no missing values) crete class with 3 values (no		Iris-versicolor	G1		5.6	2.9	3.6	
ssing values)		Iris-versicolor	G1		5.6	3.0	4.5	
neta attribute (no missing values)		Iris-versicolor	G1		5.6	3.0	4.1	
	_	Iris-versicolor	G1		5.7	3.0	4.2	
ariables	6	Iris-versicolor	G1		5.7	2.9	4.2	
Show variable labels (if present)	7	lris-versicolor	G1		5.7	2.8	4.1	
Visualize numeric values	8	lris-virginica	G1		5.8	2.8	5.1	
Color by instance classes	9	Iris-virginica	G1		5.6	2.8	4.9	
election Select full rows								

Classification

Classification in Orange

The basic classification schema

- A classifier is a function that maps from the attributes to the classes
 - Classifier(attributes) = Classes
 - f(X) = y
- In training, the attributes and the classes are known (training examples) and we are learning a mapping function f (the classifier)
 ?(X) = y
- When predicting, both the attributes and the classifier are known, and we are assigning the classes

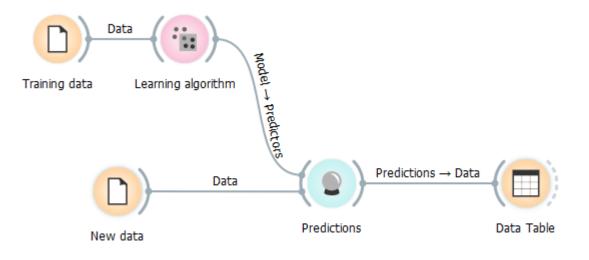

•
$$f(X) = ?$$

• What about evaluation?

The basic classification schema - evaluation

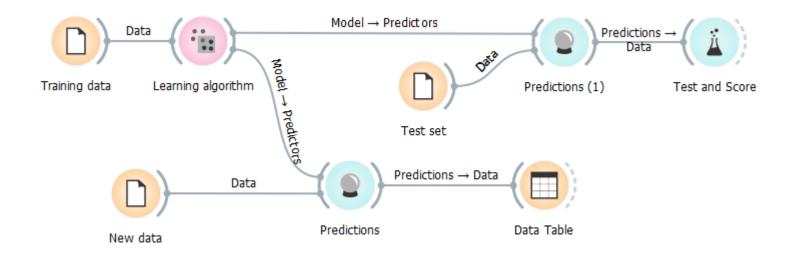
Training set

- When evaluating, f, X and y are known. We compute the predictions y_p = f(X) and evaluate the difference between Y and Y_p.
- Train and test data:

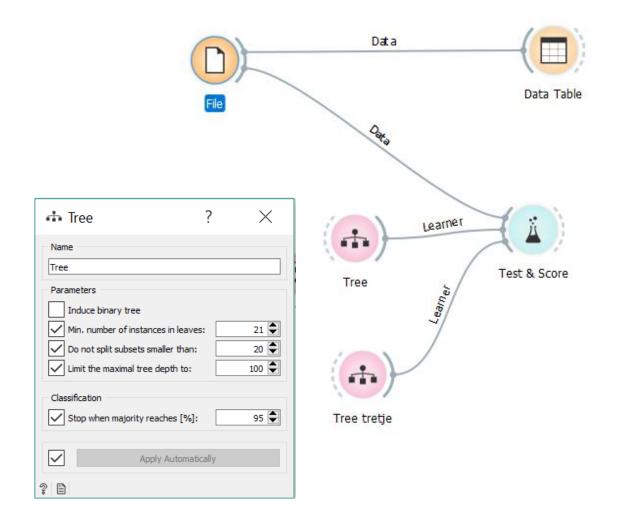

Xtrain, Xtest, Ytrain, Ytest

Lab exercise 2

Classification in Orange

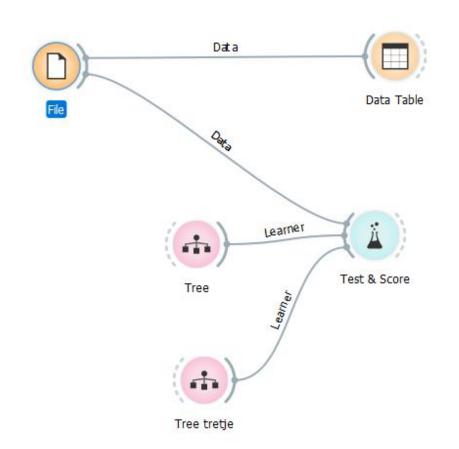

Basic classification schema in Orange

- We train the model on the train set
- We predict the target for the new instances
- There are several classification algorithms:
 - Decision trees
 - Naive Bayes classifier
 - K nearest neighbors (KNN)
 - Artificial neural networks (ANN)
 -



Classification with evaluation

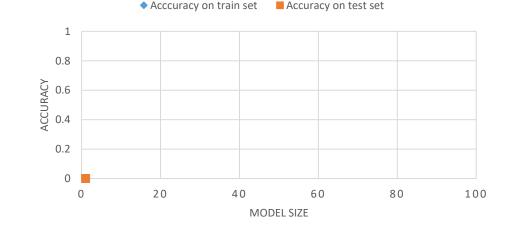
- We train the model on the train set
- We evaluate on the test set
- We classify the new instances



Exercise 2: Induce a decision tree

- 1. Dataset: "titanic"
- 2. Play with tree parameters
- 3. Repeat with the "adult" dataset
- 4. Evaluate tree classifiers with different parameter values

Exercise 2: Evaluate the decision tree



- Dataset: "zoo"
- Compare tree classifiers with different parameter values

Homework

Model complexity vs. accuracy on train and test set Datasets:

- A-greater-then-B.csv
- Another reasonably sized classification dataset from <u>http://file.biolab.si/datasets/</u>

ACCURACY VS. MODEL COMPLEXITY

21

Basic classification in scikit

```
csvFileName = r".\Datasets\A-greater-then-B.csv"
df = pd.read csv(csvFileName)
feature cols = ['A', 'B', 'C']
target var = 'A>B'
X = df[feature cols].values
y = df[target var].values
X train, X test, y train, y test = train test split(X, y, test size=0.1, random state=42)
decision tree = tree.DecisionTreeClassifier()
decision tree.fit(X train, y train)
y pred = decision tree.predict(X test)
accuracy = metrics.accuracy score(y_test, y_pred)
```

Refresh your memory

- Confusion matrix and ROC.
 - Bramer (2007), chapter 11: Measuring the Performance of a Classifier
 - Fawcett, Tom. "**An introduction to ROC analysis**." Pattern recognition letters 27.8 (2006): 861-874.